前言
- 本文记录了《深度学习推荐系统实战》第11讲召回层的要点
- 课程地址:深度学习推荐系统实战
1. 召回层和排序层的功能特点
在推荐物品候选集规模非常大的时候,我们该如何快速又准确地筛选掉不相关物品,从而节约排序时所消耗的计算资源呢?这其实就是推荐系统召回层要解决的问题
从技术架构的角度来说,“召回层”处于推荐系统的线上服务模块之中,推荐服务器从数据库或内存中拿到所有候选物品集合后,会依次经过召回层、排序层、再排序层(也被称为补充算法层),才能够产生用户最终看到的推荐列表。线上服务需要这么多“层”才能产生最终的结果,不同层之间的功能特点有什么区别呢?
- 召回层就是要快速、准确地过滤出相关物品,缩小候选集,排序层则要以提升推荐效果为目标,作出精准的推荐列表排序。
- 需要注意的是,在设计召回层时,计算速度和召回率其实是两个矛盾的指标。怎么理解呢?比如说,为了提高计算速度,我们需要使召回策略尽量简单,而为了提高召回率或者说召回精度,让召回策略尽量把用户感兴趣的物品囊括在内,这又要求召回策略不能过于简单,否则召回物品就无法满足排序模型的要求。
2. 如何理解“单策略召回”方法
怎么才能让召回层“快”起来呢?我们知道,排序层慢的原因是模型复杂,算法计算量大,那我们能不能反其道而行之,用一些简单直观的策略来实现召回层呢?当然是可以的,这就是所谓的单策略召回。
单策略召回指的是,通过制定一条规则或者利用一个简单模型来快速地召回可能的相关物品。 这里的规则其实就是用户可能感兴趣的物品的特点,我们拿 SparrowRecSys 里面的电影推荐为例。在推荐电影的时候,我们首先要想到用户可能会喜欢什么电影。按照经验来说,很有可能是这三类,分别是大众口碑好的、近期非常火热的,以及跟我之前喜欢的电影风格类似的。
- 基于其中任何一条,我们都可以快速实现一个单策略召回层。比如在 SparrowRecSys 中就制定了这样一条召回策略:如果用户对电影 A 的评分较高,比如超过 4 分,那么我们就将与 A 风格相同,并且平均评分在前 50 的电影召回,放入排序候选集中。基于这条规则,我实现了如下的召回层:
1 | //详见SimilarMovieFlow class |
3. 如何理解“多路召回”方法
所谓“多路召回策略”,就是指采用不同的策略、特征或简单模型,分别召回一部分候选集,然后把候选集混合在一起供后续排序模型使用的策略。
其中,各简单策略保证候选集的快速召回,从不同角度设计的策略又能保证召回率接近理想的状态,不至于损害排序效果。所以,多路召回策略是在计算速度和召回率之间进行权衡的结果。
- 这里,我们还是以电影推荐为例来做进一步的解释。下面是我给出的电影推荐中常用的多路召回策略,包括热门电影、风格类型、高分评价、最新上映以及朋友喜欢等等。除此之外,我们也可以把一些推断速度比较快的简单模型(比如逻辑回归,协同过滤等)生成的推荐结果放入多路召回层中,形成综合性更好的候选集。具体的操作过程就是,我们分别执行这些策略,让每个策略选取 Top K 个物品,最后混合多个 Top K 物品,就形成了最终的多路召回候选集。整个过程就如下所示:
- 在 SparrowRecsys 中,我们就实现了由风格类型、高分评价、最新上映,这三路召回策略组成的多路召回方法,具体代码如下:
1 | public static List<Movie> multipleRetrievalCandidates(List<Movie> userHistory){ |
- 多路召回策略虽然能够比较全面地照顾到不同的召回方法,但也存在一些缺点。比如,在确定每一路的召回物品数量时,往往需要大量的人工参与和调整,具体的数值需要经过大量线上 AB 测试来决定。此外,因为策略之间的信息和数据是割裂的,所以我们很难综合考虑不同策略对一个物品的影响。
4. 基于 Embedding 的召回方法
事实上,利用物品和用户 Embedding 相似性来构建召回层,是深度学习推荐系统中非常经典的技术方案。我们可以把它的优势总结为三方面。
- 多路召回中使用的“兴趣标签”“热门度”“流行趋势”“物品属性”等信息都可以作为 Embedding 方法中的附加信息(Side Information),融合进最终的 Embedding 向量中 。因此,在利用 Embedding 召回的过程中,我们就相当于考虑到了多路召回的多种策略。
- Embedding 召回的评分具有连续性。我们知道,多路召回中不同召回策略产生的相似度、热度等分值不具备可比性,所以我们无法据此来决定每个召回策略放回候选集的大小。但是,Embedding 召回却可以把 Embedding 间的相似度作为唯一的判断标准,因此它可以随意限定召回的候选集大小。
- 在线上服务的过程中,Embedding 相似性的计算也相对简单和直接。通过简单的点积或余弦相似度的运算就能够得到相似度得分,便于线上的快速召回。
在 SparrowRecsys 中,我们也实现了基于 Embedding 的召回方法。
- 第一步,我们获取用户的 Embedding。第二步,我们获取所有物品的候选集,并且逐一获取物品的 Embedding,计算物品 Embedding 和用户 Embedding 的相似度。第三步,我们根据相似度排序,返回规定大小的候选集。
1 | public static List<Movie> retrievalCandidatesByEmbedding(User user){ |